A data-driven physics-informed neural network for predicting the viscosity of nanofluids

Author:

Chiniforooshan Esfahani Ilia1ORCID

Affiliation:

1. Northeastern University , 360 Huntington Ave., Boston, Massachusetts 02115, USA

Abstract

Nanofluids have been applied in various fields, such as solar collectors, petroleum engineering, and chemical engineering, due to their superior properties compared to traditional fluids. Among the various thermophysical properties of nanofluids, viscosity plays a critical role in thermal applications involving heat transfer and fluid flow. While several conventional machine learning (ML) techniques have been proposed to predict viscosity, these conventional models require many experimental measurements to be optimized and make accurate predictions. This study reports a novel ML method using a multi-fidelity neural network (MFNN) to accurately predict the viscosity of nanofluids by incorporating the physical laws into the model. The MFNN correlates a low-fidelity dataset derived from the prediction of the theoretical model with a high-fidelity dataset, which consists of experimental measurements. It is shown that the MFNN can recover the rheology of nanofluids and outperforms the conventional artificial neural network due to incorporating the underlying physics of nanofluids into a model.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3