Highly conductive tungsten suboxide nanotubes

Author:

Huez Cécile1ORCID,Berthe Maxime1ORCID,Volatron Florence2ORCID,Guigner Jean-Michel3,Brouri Dalil4ORCID,Chamoreau Lise-Marie2ORCID,Baptiste Benoît3ORCID,Proust Anna2ORCID,Vuillaume Dominique1ORCID

Affiliation:

1. Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille 1 , Av. Poincaré, Villeneuve d’Ascq, France

2. Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université 2 , 4 Place Jussieu, Paris F-75005, France

3. Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle 3 , 4 place Jussieu, Paris F-75005, France

4. Laboratoire de Réactivité des Surfaces (LRS), CNRS, Sorbonne Université 4 , 4 place Jussieu, Paris F-75005, France

Abstract

We demonstrate a high electron conductivity (>102 S/cm and up to 103 S/cm) of tungsten suboxide W18O52.4−52.9 (or equivalently WO2.91−2.94) nanotubes (2–3 nm in diameter, ∼μm long). The conductivity is measured in the temperature range of 120–300 K by a four-probe scanning tunneling microscope in ultrahigh vacuum. The nanotubes are synthesized by a low-temperature and low-cost solvothermal method. They self-assemble in bundles of hundreds of nanotubes forming nanowires (∼μm long, few tens nm wide). We observe a large anisotropy of the conductivity with a ratio (longitudinal conductivity/perpendicular conductivity) of ∼105. A large fraction of them (∼65%–95%) shows a metallic-like, thermal activation-less electron transport behavior. Few of them, with a lower conductivity from 10 to 102 S/cm, display a variable range hopping behavior. In this latter case, a hopping barrier energy of ∼0.24 eV is inferred in agreement with the calculated energy level of the oxygen vacancy below the conduction band. This result is in agreement with a relative average concentration of oxygen vacancies of ∼3%, for which a semiconductor-to-metal transition was theoretically predicted. These tungsten suboxide nanostructures are prone to a wide range of applications in nanoelectronics.

Funder

Centre National de la Recherche Scientifique

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3