Phenomenon of photo-regulation on gold/diamond Schottky barriers and its detector applications

Author:

Zhang Xiaohui1ORCID,Liu Kang12ORCID,Liu Benjian1ORCID,Dai Bing13ORCID,Zhang Yumin1ORCID,Zhu Jiaqi12ORCID

Affiliation:

1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology 1 , Harbin 150080, People's Republic of China

2. Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education 2 , Harbin 150080, People's Republic of China

3. HRG Institute (Zhongshan) of unmanned Equipment & AI 3 , Zhongshan 528400, People's Republic of China

Abstract

A thickness asymmetric electrode structure on an oxygen-terminated type IIa diamond was designed and prepared (one electrode was semitransparent to ultraviolet light and the other blocked the transmission of ultraviolet light). This structure exhibited an apparent photo-induced rectification property under irradiation by a deuterium lamp. This is attributed to the mechanism by which the light penetrating the electrode reduces the metal–diamond contact barrier. Furthermore, we developed a light-modulated Schottky barrier diamond photodetector based on this mechanism. Solar-blind light can lower the Schottky barrier height in situ in the presence of light, which significantly enhances the photocurrent. However, the Schottky barrier is not reduced by light regulation when there is no light; therefore, the low dark current of the detector is still guaranteed. Compared with the non-photo-regulated Schottky barrier detector, the photo-regulated Schottky barrier detector exhibits a 128% increase in responsivity at 220 nm under a 1.6 V/μm bias. For such an obvious difference in detection performance, this mechanism has rarely been a focus of studies on diamond detectors. In addition to diamond detectors, light-modulated barrier technology can also be applied to other fields related to the diamond surface potential, such as color center control and Schottky diodes; it can also be used to control or evaluate device performance.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

the Natural Science Foundation of Heilongjiang

Heilongjiang Postdoctoral Foundation

Fundamental Research Funds for the Central Universities

Key Laboratory of Micro-systems and Micro-structures ManufacturingMinistry of Education

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3