Measurement principles for quantum spectroscopy of molecular materials with entangled photons

Author:

Moretti Luca12ORCID,Rojas-Gatjens Esteban23ORCID,Uboldi Lorenzo12ORCID,Tiede David Otto24ORCID,Kumar Evan J.2ORCID,Trovatello Chiara15ORCID,Preda Fabrizio6ORCID,Perri Antonio6ORCID,Manzoni Cristian7ORCID,Cerullo Giulio17ORCID,Srimath Kandada Ajay Ram2ORCID

Affiliation:

1. Dipartimento di Fisica, Politecnico di Milano 1 , Piazza Leonardo da Vinci 32, Milano, Italy

2. Department of Physics and Center for Functional Materials, Wake Forest University 2 , 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, USA

3. School of Chemistry and Biochemistry, Georgia Institute of Technology 3 , Atlanta, Georgia 30332, USA

4. Institute of Materials Science of Sevilla, Spanish National Research Council 4 , Américo Vespucio, 49, 41092 Sevilla, Spain

5. Department of Mechanical Engineering, Columbia University 5 , New York, New York 10027, USA

6. NIREOS S.R.L. 6 , Via G. Durando 39, 20158 Milano, Italy

7. IFN-CNR, Dipartimento di Fisica, Politecnico di Milano 7 , Piazza Leonardo da Vinci 32, Milano, Italy

Abstract

Nonlinear spectroscopy with quantum entangled photons is an emerging field of research that holds the promise to achieve superior signal-to-noise ratio and effectively isolate many-body interactions. Photon sources used for this purpose, however, lack the frequency tunability and spectral bandwidth demanded by contemporary molecular materials. Here, we present design strategies for efficient spontaneous parametric downconversion to generate biphoton states with adequate spectral bandwidth and at visible wavelengths. Importantly, we demonstrate, by suitable design of the nonlinear optical interaction, the scope to engineer the degree of spectral correlations between the photons of the pair. We also present an experimental methodology to effectively characterize such spectral correlations. Importantly, we believe that such a characterization tool can be effectively adapted as a spectroscopy platform to optically probe system–bath interactions in materials.

Funder

Center for Functional Materials, Wake Forest University

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3