A continuous-wave and pulsed X-band electron spin resonance spectrometer operating in ultra-high vacuum for the study of low dimensional spin ensembles

Author:

Cho Franklin H.12ORCID,Park Juyoung13,Oh Soyoung13,Yu Jisoo13ORCID,Jeong Yejin13,Colazzo Luciano12ORCID,Spree Lukas12ORCID,Hommel Caroline12ORCID,Ardavan Arzhang4ORCID,Boero Giovanni5ORCID,Donati Fabio13ORCID

Affiliation:

1. Center for Quantum Nanoscience, Institute for Basic Science 1 , Seoul 03760, South Korea

2. Ewha Womans University 2 , Seoul 03760, South Korea

3. Department of Physics, Ewha Womans University 3 , Seoul 03760, South Korea

4. Clarendon Laboratory, Department of Physics, University of Oxford 4 , Oxford OX1 3PU, United Kingdom

5. Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL) 5 , Lausanne 1015, Switzerland

Abstract

We report the development of a continuous-wave and pulsed X-band electron spin resonance (ESR) spectrometer for the study of spins on ordered surfaces down to cryogenic temperatures. The spectrometer operates in ultra-high vacuum and utilizes a half-wavelength microstrip line resonator realized using epitaxially grown copper films on single crystal Al2O3 substrates. The one-dimensional microstrip line resonator exhibits a quality factor of more than 200 at room temperature, close to the upper limit determined by radiation losses. The surface characterizations of the copper strip of the resonator by atomic force microscopy, low-energy electron diffraction, and scanning tunneling microscopy show that the surface is atomically clean, flat, and single crystalline. Measuring the ESR spectrum at 15 K from a few nm thick molecular film of YPc2, we find a continuous-wave ESR sensitivity of 2.6 × 1011 spins/G · Hz1/2, indicating that a signal-to-noise ratio of 3.9 G · Hz1/2 is expected from a monolayer of YPc2 molecules. Advanced pulsed ESR experimental capabilities, including dynamical decoupling and electron-nuclear double resonance, are demonstrated using free radicals diluted in a glassy matrix.

Funder

Institute for Basic Science

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3