Experimental and simulation studies of thermal transport based on plasma flow motion in laser-ablated dense regions of Au and CH

Author:

Zhang Yuxue1ORCID,Qing Bo1,Zhao Yang1,Song Tianming1ORCID,Zhang Zhiyu1,Xiong Gang1ORCID,Huang Chengwu1,Zhu Tuo1,Lv Min1,Zhao Yan1,Zhang Jiyan1,Yang Jiamin1ORCID

Affiliation:

1. Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900, China

Abstract

A practical experimental method is proposed to investigate thermal transport by characterizing the motion of plasma flows through a x-ray spectroscopic technique using tracers. By simultaneously measuring multiple parameters, namely, the mass-ablation rate, the temporal evolution of plasma flow velocities and trajectories and the temperature, it is possible to observe a variety of physical processes, such as shock wave compression, heating by thermal waves, and plasma thermal expansion, and to determine their relative importance in different phases during the irradiation of CH and Au targets. From a comparison with hydrodynamic simulations, we find significant differences in the motion of the plasma flows between CH and Au, which can be attributed to different sensitivities to the thermal transport process. There are also differences in the ablation and electron temperature histories of the two materials. These results confirm that velocities and trajectories of plasma motion can provide useful evidence in the investigation of thermal conduction, and the approach presented here deserves more attention in the context of inertial confinement fusion and high-energy-density physics.

Funder

Science Challenge Project

National Key Research and Development Program of China

NSFC

CAEP Foundation

Foundation for the Development of Science and Technology of CAEP

Publisher

AIP Publishing

Subject

Electrical and Electronic Engineering,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3