Microwave magnonic micro-oscillator based on a nm-thick YIG film

Author:

Nikitin Andrey A.1ORCID,Tatsenko Ivan Yu.1ORCID,Kostylev Mikhail P.2ORCID,Ustinov Alexey B.1ORCID

Affiliation:

1. Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University 1 , St. Petersburg 197022, Russia

2. Department of Physics, University of Western Australia 2 , Crawley, W.A. 6009, Australia

Abstract

A numerical model describing a magnonic active ring oscillator (MARO) based on a microscopic spin-wave delay line is proposed. The model considers excitation, propagation, and reception of the magnetostatic surface waves in a yttrium iron garnet (YIG) magnetic film with a thickness in the nanometer range. The waves are excited and received with a microscopic coplanar antenna. We employed the model to analyze the influence of the YIG-film thickness and the distance between the antennas on the MARO performance characteristics. We showed that an increase in the delay time inserted by the delay line reduces the phase noise of the MARO and increases the auto-oscillation threshold. In addition, we found a relation between the auto-oscillation threshold, the thickness of the YIG film, and the distance between the antennas. The relation helps design miniature MAROs and suggests a way to reduce the phase noise of the device. The model predicts a phase noise level of −115 dBc/Hz at a 10 kHz offset from an oscillation frequency in the vicinity of 5 GHz for the MARO based on a 100 nm-thick YIG film and 56 μm of distance between the coplanar nano-antennas of the YIG-film based delay line. We believe that this is a clear way forward to microminiaturize the time-delay feedback microwave auto-oscillators. A further reduction in the phase noise down to −125 dBc/Hz at a 10 kHz offset is found in a model of cascaded connection of several microscopic spin-wave delay lines.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3