On the upscaling of the diffusion equation in a heterogeneous medium by the two different methods

Author:

Shapiro Alexander A.1ORCID

Affiliation:

1. CERE—Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark , DTU b. 229, 2800 Kgs. Lyngby, Denmark

Abstract

Upscaling the flow equations appears in many studies related to diffusion, heat conductivity, and flows in porous media. Variable coefficients of the original fine-scale process description are substituted by averaged constant values. The different upscaling procedures have been suggested in the literature. The question arises, whether they result in the same or different upscaled models; moreover, whether the solutions of the coarse-scale equations provide a reasonably accurate description of the fine scale. In this work, we consider three sample 1D diffusion problems with periodic coefficients: diffusion with or without the external source, as well as diffusion with advection. These problems are upscaled by the two methods. The method of direct upscaling selects the averaged coefficients to provide the minimum difference between the solutions of the coarse-scale and fine-scale models. The method of continuous upscaling, developed previously, consists of the continuous averaging transformation between the distant scales. New expressions for the upscaled diffusion coefficients were derived for this case. It turns out that the direct upscaling results in multiple optimum parameters of the upscaled model. Meanwhile, continuous upscaling points at one of them. The coarse-scale approximation of a fine-scale solution may be unsatisfactory, even for the best choice of the upscaled coefficient. A numerical study demonstrates a nontrivial behavior of the diffusion coefficient under continuous upscaling, while it converges to an asymptotic value.

Publisher

AIP Publishing

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3