Affiliation:
1. Department of Civil, Environmental and Architectural Engineering, University of Padova , 35131 Padova, Italy
Abstract
The work proposes and discusses a theoretical approach to predict the behavior of an open-channel supercritical flow that overpasses a step, either forward or backward facing, non-orthogonal to the flow direction. In this case, a sequence of oblique shock waves and expansion fans is generated close to and downstream of the step. The proposed model is verified by comparing the theoretical predictions with the results provided by a two-dimensional, depth averaged numerical model. Applications include the combined use of oblique steps and abrupt wall deflections to suppress wave fronts that characterize supercritical flow in channel bends. Special attention is devoted to the supercritical to subcritical transition (and vice versa) in overpassing a forward-facing step; this is found to be a rather intriguing problem characterized by complex solutions and by hysteresis. Besides the classic smooth (everywhere supercritical) and choked (with a hydraulic jump and a subcritical flow upstream of the step) solutions, an additional intermediated flow configuration can occur for particular characteristics of the supercritical current and step height. The domain of existence of the different solutions, as well as the hysteresis domain, are obtained based on the theoretical and the numerical models.
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献