Identification of high order closure terms from fully kinetic simulations using machine learning

Author:

Laperre B.1ORCID,Amaya J.1ORCID,Jamal S.1ORCID,Lapenta G.1ORCID

Affiliation:

1. Centre of Mathematical Plasma- and Astrophysics, KU Leuven, Heverlee, 3001, Belgium

Abstract

Simulations of large-scale plasma systems are typically based on a fluid approximation approach. These models construct a moment-based system of equations that approximate the particle-based physics as a fluid, but as a result, they lack the small-scale physical processes available to fully kinetic models. Traditionally, empirical closure relations are used to close the moment-based system of equations, which typically approximate the pressure tensor or heat flux. The more accurate the closure relation, the stronger the simulation approaches kinetic-based results. In this paper, new closure terms are constructed using machine learning techniques. Two different machine learning models, a multi-layer perceptron and a gradient boosting regressor, synthesize a local closure relation for the pressure tensor and heat flux vector from fully kinetic simulations of a 2D magnetic reconnection problem. The models are compared to an existing closure relation for the pressure tensor, and the applicability of the models is discussed. The initial results show that the models can capture the diagonal components of the pressure tensor accurately and show promising results for the heat flux, opening the way for new experiments in multi-scale modeling. We find that the sampling of the points used to train both models plays a capital role in their accuracy.

Funder

H2020 LEIT Space

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3