Computer modeling of thermotransport in a uniform binary liquid solution with equimolar n-alkane mixtures

Author:

Zhong JunORCID,Xu ShenghuaORCID

Abstract

By means of molecular dynamics (MD), two novel methods, a thermal mean-path that may outline temperature profiles effectively in the MD system and a modified coarse-grained force field potential (the MCG-FFP) that may depict inter/intra-molecular interactions fairly well among n-alkane species, are employed to simulate a thermotransport process in a uniform liquid solution with two equimolar n-pentane (nC-5) and n-decane (nC-10) mixtures. In addition, all the MD simulations are running under two constraints: a weak thermal gradient exerting on the MD system from its hot through cold boundary sides and the standard-state acting on the MD system from its outer environment. During the whole MD simulations, coefficients of thermal diffusion and mass mutual diffusion, and the Soret coefficient (SC) for the MD system are calculated by using the MCG-FFP. As a result, the MD simulations indicate that nC-5 species with light molar-mass would migrate toward the hot boundary region, while nC-10 species with heavy molar-mass would migrate toward the cold one. Coefficients calculated from the MCG-FFP are found to meet relevant experimental outputs fairly well. Furthermore, an empirical formula developed by means of relevant continuum methods is used for calculating coefficients of mass mutual diffusion in solutions mixing with multimolar nC-5 and nC-10 species. Its one output is found to corroborate pretty well with that from the MD simulations. This may expect that such the formula would perform universally when characterizing properties of mass mutual diffusion in binary liquid solutions with other multimolar alkane mixtures in the petroleum engineering.

Funder

National Science Foundation

National Natural Science Foundation of China

the Hebei Provincial Key Laboratory of Thermal Protection Materials, China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3