Development and application of hybrid AIMD/cDFT simulations for atomic-to-mesoscale chemistry

Author:

Song Duo1ORCID,Bylaska Eric J.1ORCID,Sushko Maria L.1ORCID,Rosso Kevin M.1ORCID

Affiliation:

1. Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory , Richland, Washington 99354, USA

Abstract

Many important chemical processes involve reactivity and dynamics in complex solutions. Gaining a fundamental understanding of these reaction mechanisms is a challenging goal that requires advanced computational and experimental approaches. However, important techniques such as molecular simulation have limitations in terms of scales of time, length, and system complexity. Furthermore, among the currently available solvation models, there are very few designed to describe the interaction between the molecular scale and the mesoscale. To help address this challenge, here, we establish a novel hybrid approach that couples first-principles plane-wave density functional theory with classical density functional theory (cDFT). In this approach, a region of interest described by ab initio molecular dynamics (AIMD) interacts with the surrounding medium described using cDFT to arrive at a self-consistent ground state. cDFT is a robust but efficient mesoscopic approach to accurate thermodynamics of bulk electrolyte solutions over a wide concentration range (up to 2M concentrations). Benchmarking against commonly used continuum models of solvation, such as SMD, as well as experiments, demonstrates that our hybrid AIMD–cDFT method is able to produce reasonable solvation energies for a variety of molecules and ions. With this model, we also examined the solvent effects on a prototype SN2 reaction of the nucleophilic attack of a chloride ion on methyl chloride in the solution. The resulting reaction pathway profile and the solution phase barrier agree well with experiment, showing that our AIMD/cDFT hybrid approach can provide insight into the specific role of the solvent on the reaction coordinate.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3