Crystallization and the liquid–liquid critical point in nonbonded modified-WAC models

Author:

Lascaris Erik1ORCID,Marchese Francesca1ORCID,Gaspar Nicole1ORCID

Affiliation:

1. Department of Chemistry & Physical Sciences, Pace University , New York, New York 10038, USA

Abstract

For decades, it has been known that Liquid–Liquid Critical Points (LLCPs) can exist in one-component liquids, yet a comprehensive understanding of the conditions under which they arise remains elusive. To better comprehend the possible interplay between the LLCP and the crystalline phase, we conduct molecular dynamics simulations using the nonbonded family of modified-WAC (mWAC) models, which are known to exhibit a LLCP for certain parameter values. By comparing different versions of the mWAC model—those featuring a LLCP and those lacking one—we identify several key differences between the models relating to crystallization. Those models that do have a LLCP are found to have multiple stable crystalline phases, one of them being a solid-state ionic conductor similar to superionic ice. Moreover, we find that for models that do not have a LLCP, the liquid becomes a glass at a larger range of temperatures, possibly preventing the occurrence of a LLCP. Further studies are required to determine if these results are general or model-specific.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3