High-spatiotemporal resolution microwave-induced thermoacoustic tomography for imaging biological dynamics in deep tissue

Author:

Wang Yu123ORCID,Tang Xiaoyu123ORCID,Qin Huan123ORCID

Affiliation:

1. MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University 1 , Guangzhou 510631, China

2. Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University 2 , Guangzhou 510631, China

3. Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University 3 , Guangzhou 510631, China

Abstract

Biological systems undergo constant dynamic changes across various spatial and temporal scales. To investigate the intricate biological dynamics in living organisms, there is a strong need for high-speed and high-resolution imaging capabilities with significant imaging depth. In this work, we present high-spatiotemporal resolution microwave-induced thermoacoustic tomography (HR-MTAT) as a method for imaging biological dynamics in deep tissues. HR-MTAT utilizes nanosecond pulsed microwave excitation and ultrasound detection, with appropriate spatial configurations, to achieve high coupling of the sample to the microwaves, to produce images in soft tissue with dielectric contrast and sub-millimeter spatial resolution (230 μm), to a depth of a few centimeters. Notably, by employing a 128-channel parallel signal acquisition and digitization strategy, the field programmable gate array module manages data synthesis, and GPU-based parallel pixel reconstruction facilitates HR-MTAT to accomplish single-frame image reconstruction in an impressive 50 μs. The practical feasibility of HR-MTAT was evaluated in live mice. The results show that HR-MTAT can noninvasively image whole-body small animals (up to 60 mm in depth) with clear resolution of internal organ structures at a frame rate of 100 Hz, without the need for labeling. At this high spatiotemporal resolution, HR-MTAT can capture respiration, heartbeat, and arterial pulse propagation without motion artifacts and track bio-nanoprobes in livers and tumors. These findings demonstrate HR-MTAT's ability to perform dynamic imaging with high contrast and resolution in deep tissues.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3