Quantum states generation and manipulation in a programmable silicon-photonic four-qubit system with high-fidelity and purity

Author:

Lee Jong-Moo1ORCID,Park Jiho1,Bang Jeongho1ORCID,Sohn Young-Ik2ORCID,Baldazzi Alessio3ORCID,Sanna Matteo3ORCID,Azzini Stefano3ORCID,Pavesi Lorenzo3ORCID

Affiliation:

1. ETRI 1 , 218 Gajeong-ro, Daejeon 34129, South Korea

2. KAIST 2 , 291 Daehak-ro, Daejeon 34141, South Korea

3. Department of Physics, University of Trento 3 , via Sommarive 14, 38123 Trento, Italy

Abstract

We present a programmable silicon photonic four-qubit integrated circuit for the generation and manipulation of diverse quantum states. The silicon photonic chip integrates photon-pair sources, pump-reducing filters, wavelength-division-multiplexing filters, Mach–Zehnder interferometer switches, and single-qubit arbitrary gates, enabling versatile state preparation and tomography. We measure Hong–Ou–Mandel interference with an impressive 98% visibility using four-photon coincidence, laying the foundation for high-purity qubits. Our analysis involves estimating the fidelity and purity of distinct quantum states through maximum-likelihood estimation applied to tomographic measurements. In our experimental results, we showcase the following achievements: a heralded single qubit achieving 98.2% fidelity and 98.3% purity, a Bell state reaching 95.2% fidelity and 94.8% purity, and a four-qubit system with two simultaneous Bell states exhibiting 87.4% fidelity and 84.6% purity. Finally, a four-qubit Greenberger–Horne–Zeilinger (GHZ) state demonstrates 85.4% fidelity and 81.7% purity. In addition, we certify the entanglement of the four-photon GHZ state through Bell’s inequality violations and a negative entanglement witness.

Funder

Electronics and Telecommunications Research Institute

National Research Foundation of Korea

Horizon 2020 Framework Program

Publisher

AIP Publishing

Reference45 articles.

1. Fusion-based quantum computation;Nat. Commun.,2023

2. B. Pankovich , A.Kan, K. H.Wan, M.Ostmann, A.Neville, S.Omkar, A.Sohbi, and K.Brádlerw, “High photon-loss threshold quantum computing using GHZ-state measurements,” arXiv:2308.04192 (2023).

3. Laser written circuits for quantum photonics;Laser Photonics Rev.,2015

4. Programmable four-photon graph states on a silicon chip;Nat. Commun.,2019

5. Integrated photonic quantum technologies;Nat. Photonics,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3