Gradient boosted and statistical feature selection workflow for materials property predictions

Author:

Jung Son Gyo123ORCID,Jung Guwon134ORCID,Cole Jacqueline M.123ORCID

Affiliation:

1. Cavendish Laboratory, Department of Physics, University of Cambridge 1 , J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

2. ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus 2 , Didcot, Oxfordshire OX11 0QX, United Kingdom

3. Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus 3 , Didcot, Oxfordshire OX11 0FA, United Kingdom

4. Scientific Computing Department, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus 4 , Didcot, Oxfordshire OX11 0QX, United Kingdom

Abstract

With the emergence of big data initiatives and the wealth of available chemical data, data-driven approaches are becoming a vital component of materials discovery pipelines or workflows. The screening of materials using machine-learning models, in particular, is increasingly gaining momentum to accelerate the discovery of new materials. However, the black-box treatment of machine-learning methods suffers from a lack of model interpretability, as feature relevance and interactions can be overlooked or disregarded. In addition, naive approaches to model training often lead to irrelevant features being used which necessitates the need for various regularization techniques to achieve model generalization; this incurs a high computational cost. We present a feature-selection workflow that overcomes this problem by leveraging a gradient boosting framework and statistical feature analyses to identify a subset of features, in a recursive manner, which maximizes their relevance to the target variable or classes. We subsequently obtain minimal feature redundancy through multicollinearity reduction by performing feature correlation and hierarchical cluster analyses. The features are further refined using a wrapper method, which follows a greedy search approach by evaluating all possible feature combinations against the evaluation criterion. A case study on elastic material-property prediction and a case study on the classification of materials by their metallicity are used to illustrate the use of our proposed workflow; although it is highly general, as demonstrated through our wider subsequent prediction of various material properties. Our Bayesian-optimized machine-learning models generated results, without the use of regularization techniques, which are comparable to the state-of-the-art that are reported in the scientific literature.

Funder

Royal Academy of Engineering

ISIS Neutron and Muon Source

Rutherford Appleton Laboratory

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3