A novel method for the measurement of superconducting transmission lines at terahertz frequencies

Author:

Peng Zhaohang12ORCID,Fan Bowen12,Miao Wei1ORCID,Wang Zheng1,Ren Yuan1ORCID,Li Jing1ORCID,Shi Shengcai1ORCID

Affiliation:

1. Purple Mountain Observatory, CAS 1 , Nanjing 210033, China

2. University of Science and Technology of China 2 , Hefei 230026, China

Abstract

Characterizing the properties (e.g., effective dielectric constant εeff, attenuation constant α, and characteristic impedance Z0) of terahertz (THz) superconducting transmission lines is of particular interest in designing on-chip integrated THz bandpass filters, which are a critical component for THz astronomical instruments, such as multi-color camera and broadband imaging spectrometers. Here, we propose a novel method for the characterization of three parameters (εeff, α, and Z0) of THz superconducting transmission lines. This method measures the ratio of the THz signal powers through two different-length branches of the superconducting transmission line to be measured. In addition, only one measurement is required for an all-in-one device chip, including an antenna, a half-power divider, the superconducting transmission line to be measured, and two detectors. The key point is that the superconducting transmission line to be measured is impedance-mismatched with the two integrated detectors. The method is validated through simulation and measurement for superconducting coplanar waveguide transmission lines around 400 GHz.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3