Prediction of steady hydrodynamic performance of pump jet propulsion based on free wake vortex model

Author:

Weng KaiqiangORCID,Shao Fei,Li Jiandong,Sun ShuaiORCID,Wang Chao

Abstract

Due to mutual interference between various components, the transitional motion of fluid particles in the flow field of pump jet propulsion becomes more complex and variable. Additionally, the vortex structure at the wake can undergo severe contraction and deformation. To further improve the accuracy of predicting the hydrodynamic performance of pump jet propulsion, this paper proposes a time-varying, space-varying, and induced velocity-varying free wake numerical calculation model based on potential flow theory. A set of hydrodynamic performance prediction methods that consider the interference of the free wake model is also established. Furthermore, a velocity smoothing model based on time reversal is constructed based on the distribution pattern of numerical singularity points during the induced velocity calculation process, which enhances the robustness of the calculation program. By comparing and analyzing the numerical calculation results with experimental results, including pressure, circulation distribution, and hydrodynamic performance, the accuracy of the free wake model proposed in this paper is verified. The results also demonstrate that the free wake model proposed in this paper can effectively improve the prediction accuracy of the hydrodynamic performance of the pump jet propulsion.

Publisher

AIP Publishing

Reference24 articles.

1. Research status and future development trend of pump-jet propulsion technology;Autom. Appl.

2. Numerical analysis of the influence of hull-modulated inflow on unsteady force fluctuations and vortex dynamics of pump-jet propulsor;Phys. Fluids,2023

3. Experimental study on thrust pulsation characteristics of water jet propulsion pump unit;Ocean Eng.,2023

4. Numerical investigation of tip clearance effects on propulsion performance and pressure fluctuation of a pump-jet propulsor;Ocean Eng.,2019

5. Numerical simulation analysis of unsteady cavitation performance of a pump-jet propulsor;J. Shanghai Jiaotong Univ.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3