Mie scattering theory applied to light scattering of large nonhomogeneous colloidal spheres

Author:

Balderas-Cabrera Christian1ORCID,Castillo Rolando1ORCID

Affiliation:

1. Instituto de Física, Universidad Nacional Autónoma de México , P.O. Box 20-364, 01000 Mexico City, Mexico

Abstract

Colloidal suspensions made of smart core–shell structures are of current interest in many fields. Their properties come from the possibility of varying the core and shell materials for modifying the composite particles’ chemical, biological, and optical properties. These particles are formed with a material with a constant refractive index core and a shell with a refractive index decaying until it matches the solvent refractive index. Poly(N-IsoPropyl AcrylaMide) (PNIPAM) is a typical example of materials forming shells. In this report, we present how to apply Mie scattering theory to predict and understand the static light scattering of large nonhomogeneous colloidal particles with spherical symmetry whose size is comparable with or larger than the light wavelength used for developing scattering experiments, where the Rayleigh–Gans–Debye approximation is not valid. Here, the refractive index decay was approximated by a Gaussian RI profile numerically evaluated through a multilayer sphere. We calculated the form factor functions of suspensions of PNIPAM microgels previously reported and core–shell suspensions made of polystyrene/PNIPAM at 20 and 40 °C synthesized by us. In all the cases, our method succeeded in providing the scattering intensity as a function of the angle. The software for using the numerical method is fairly straightforward and is accessible as an open-source code. The results can not only help predict and understand the photonic properties of microgels with large core–shell structures but also for any particle with a refractive index distribution with spherical symmetry, as in the case of microgels with super chaotropic agents, hollow microgels, or microparticles.

Funder

Consejo Nacional de Ciencia y Tecnología

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3