Pulse generators for enhanced magnetomotive ultrasound: Toward a cost-effective imaging for tissue characterization

Author:

Mazon Valadez Ernesto E.12ORCID,Bordonal Ricardo R.2,Freire José E.2ORCID,Uliana João H.2ORCID,Arsalani Saeideh23,Collazos-Burbano David A.2ORCID,Carneiro Antonio A. O.2ORCID,Pavan Theo Z.2ORCID

Affiliation:

1. Technology Science Department, Universidad de Guadalajara, Centro Universitario de la Ciénega 1 , Ocotlan, Jalisco 47810, Mexico

2. Department of Physics, FFCLRP, University of São Paulo 2 , Ribeirão Preto, São Paulo 14040-901, Brazil

3. 3 Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas 75235-7323, USA

Abstract

Magnetomotive ultrasound (MMUS) stands out as a promising and effective ultrasound-based method for detecting magnetic nanoparticles (MNPs) within tissues. This innovative technique relies on the precise estimation of micrometric displacements induced by the interaction of an external magnetic field with MNPs. Pulsed MMUS has emerged as a strategic alternative to address limitations associated with harmonic excitation, such as heat generation in amplifiers and coils, frequency-dependent tissue mechanical responses, and prolonged magnetic field rise times. Despite the growing interest in MMUS, the devices conventionally employed to excite the coil are not specifically tailored to generate intense magnetic fields while minimizing interference with the transient behavior of induced displacements. To bridge this gap, our work introduces the design and fabrication of two pulse generators: one based on a capacitor-discharge circuit and the other on a resonant-inverter circuit. We evaluated the performance of these pulse generators by considering parameters such as the magnetic field generated, rise and fall times, and their ability to supply sustained current for varied pulse widths across different pulse repetition frequencies. Furthermore, we carried out a practical MMUS implementation using tissue-mimicking phantoms, demonstrating the capability of both devices to achieve magnetic fields of up to 1 T and average displacements of 25 µm within the phantom. In addition, we estimated the shear wave velocity, effective shear modulus, and their temperature-dependent variations. Our findings highlight the versatility and efficacy of the proposed pulse generators and emphasize their potential as low-cost platforms for theranostic applications, enabling the assessment of targeted entities within biological tissues.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Universidad de Guadalajara

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3