Theory of transverse mode instability in fiber amplifiers with multimode excitations

Author:

Wisal Kabish1ORCID,Chen Chun-Wei2ORCID,Cao Hui2ORCID,Stone A. Douglas2

Affiliation:

1. Department of Physics, Yale University 1 , New Haven, Connecticut 06520, USA

2. Department of Applied Physics, Yale University 2 , New Haven, Connecticut 06520, USA

Abstract

Transverse Mode Instability (TMI) that results from dynamic nonlinear thermo-optical scattering is the primary limitation to power scaling in high-power fiber lasers and amplifiers. It has been proposed that TMI can be suppressed by exciting multiple modes in a highly multimode fiber. We derive a semi-analytic frequency-domain theory of the threshold for the onset of TMI in narrowband fiber amplifiers under arbitrary multimode input excitation for general fiber geometries. Our detailed model includes the effect of gain saturation, pump depletion, and mode-dependent gain. We show that TMI results from the exponential growth of noise in all the modes at downshifted frequencies due to the thermo-optical coupling. The noise growth rate in each mode is given by the sum of signal powers in various modes weighted by pairwise thermo-optical coupling coefficients. We calculate thermo-optical coupling coefficients for all ∼104 pairs of modes in a standard circular multimode fiber and show that modes with large transverse spatial frequency mismatch are weakly coupled, resulting in a banded coupling matrix. This short-range behavior is due to the diffusive nature of the heat propagation, which mediates the coupling and leads to a lower noise growth rate upon multimode excitation compared to a single mode, resulting in significant TMI suppression. We find that the TMI threshold scales linearly with the number of modes that are excited asymptotically, leading to roughly an order of magnitude increase in the TMI threshold in an 82-mode fiber amplifier.

Funder

Air Force Office of Scientific Research

Simons Foundation

Publisher

AIP Publishing

Reference104 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3