Extended analytical BCS theory of superconductivity in thin films

Author:

Travaglino Riccardo1ORCID,Zaccone Alessio2ORCID

Affiliation:

1. Department of Physics and Astronomy “A. Righi,” University of Bologna 1 , via Irnerio 46, 40126 Bologna, Italy

2. Department of Physics “A. Pontremoli,” University of Milan 2 , via Celoria 16, 20133 Milan, Italy

Abstract

We present an analytically solvable theory of Bardeen-Cooper-Schrieffer-type superconductivity in good metals which are confined along one of the three spatial directions, such as thin films. Closed-form expressions for the dependence of the superconducting critical temperature Tc as a function of the confinement size L are obtained, in quantitative agreement with experimental data with no adjustable parameters. Upon increasing the confinement, a crossover from a spherical Fermi surface, which contains two growing hollow spheres corresponding to states forbidden by confinement, to a strongly deformed Fermi surface, is predicted. This crossover represents a new topological transition, driven by confinement, between two Fermi surfaces belonging to two different homotopy classes. This topological transition provides a mechanistic explanation of the commonly observed non-monotonic dependence of Tc upon film thickness with a maximum which, according to our theory, coincides with the topological transition.

Funder

Army Research Office

HORIZON EUROPE European Research Council

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anharmonic theory of superconductivity and its applications to emerging quantum materials;Journal of Physics: Condensed Matter;2024-02-01

2. Confinement Effects;Theory of Disordered Solids;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3