Transfer learning driven design optimization for inertial confinement fusion

Author:

Humbird K. D.1ORCID,Peterson J. L.1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA

Abstract

Transfer learning is a promising approach to create predictive models that incorporate simulation and experimental data into a common framework. In this technique, a neural network is first trained on a large database of simulations and then partially retrained on sparse sets of experimental data to adjust predictions to be more consistent with reality. Previously, this technique has been used to create predictive models of Omega [Humbird et al., IEEE Trans. Plasma Sci. 48, 61–70 (2019)] and NIF [Humbird et al., Phys. Plasmas 28, 042709 (2021); Kustowski et al., Mach. Learn. 3, 015035 (2022)] inertial confinement fusion (ICF) experiments that are more accurate than simulations alone. In this work, we conduct a transfer learning driven hypothetical ICF campaign in which the goal is to maximize experimental neutron yield via Bayesian optimization. The transfer learning model achieves yields within 5% of the maximum achievable yield in a modest-sized design space in fewer than 20 experiments. Furthermore, we demonstrate that this method is more efficient at optimizing designs than traditional model calibration techniques commonly employed in ICF design. Such an approach to ICF design could enable robust optimization of experimental performance under uncertainty.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3