Investigation of droplet grouping in monodisperse streams by direct numerical simulations

Author:

Ibach M.1ORCID,Vaikuntanathan V.2ORCID,Arad A.3ORCID,Katoshevski D.3ORCID,Greenberg J. B.4ORCID,Weigand B.1ORCID

Affiliation:

1. Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Stuttgart, Germany

2. Department of Mechanical Engineering, Shiv Nadar University (SNU), Greater Noida 201314, Uttar Pradesh, India

3. Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev (BGU), Beer-Sheva, Israel

4. Faculty of Aerospace Engineering, Technion—Israel Institute of Technology (IIT), Haifa, Israel

Abstract

Droplet grouping is important in technical applications and in nature where more than one droplet is seen. Despite its relevance for such problems, the fundamentals of the grouping processes are not yet fully understood. Initial conditions that expedite or impede the formation of droplet groups have been studied, but a thorough investigation of the temporal and spatial evolution of the forces at play has not been conducted. In this work, the grouping process in monodisperse droplet streams is examined in detail by direct numerical simulation (DNS), for the first time, using the multiphase code Free Surface 3D. The code framework is based on the volume-of-fluid method and uses the piecewise linear interface calculation method to reconstruct the interface. A method is established to quantify the development and evolving differences of pressure and shear drag forces on each droplet in the stream using the available DNS data. The results show a linear increase in the difference between the forces, where the drag force on the leading droplet is always larger than that on the trailing droplet. A comprehensive parametric study reveals that, on the one hand, large initial inter-droplet separation and small group distances increase grouping time due to reduced difference in the drag coefficients. On the other hand, higher initial Reynolds numbers and larger irregularities in the geometrical arrangement promote droplet grouping. The flow field shows stable wake structures at initial Reynolds numbers of 300 and the onset of vortex shedding at Reynolds numbers of 500, affecting the next pair of droplets, even for larger separation distances.

Funder

Deutsche Forschungsgemeinschaft

High Performance Computing Center Stuttgart

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3