Parallel water entry: Experimental investigations of hydrophobic/hydrophilic spheres

Author:

Akbarzadeh Pooria12ORCID,Krieger Michael2ORCID,Hofer Dominik2ORCID,Thumfart Maria2ORCID,Gittler Philipp2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Shahrood University of Technology 1 , Shahrood, Iran

2. Institute of Fluid Mechanics and Heat Transfer, Johannes Kepler University Linz 2 , Linz, Austria

Abstract

This study aims to experimentally investigate the vertical parallel water entry of two identical spheres (in geometry and material) with different surface wettability (hydrophilic or hydrophobic) pairings. The spheres simultaneously impact the water surface with velocities ranging from 1.71 to 4.32 m s−1. The corresponding ranges of the impact Froude, Weber, and Reynolds numbers are 3.87–9.75, 816–5167, and 38.5×103 to 96.8×103, respectively. The spheres' lateral distances vary from 1.0 to 5.0 times the diameter. A high-speed photography system and image processing technique analyze the event dynamics, focusing on air-entrainment cavity behavior (shapes, closure, shedding), water flow features (Worthington jets, splashes), and sphere kinetics. Results for hydrophobic/hydrophobic cases show that even at the maximum lateral distance, a slightly asymmetric cavity forms, but deep-seal pinching occurs at a single point, similar to a single water entry scenario. As the lateral distance decreases, the spheres significantly influence each other's behavior, leading to the formation of a highly asymmetric air cavity and an oblique Worthington jet. In the case of a hydrophobic/hydrophilic pairing, vortices generated behind the hydrophilic sphere influence the air cavity development of the hydrophobic sphere. This can cause a secondary pinch-off, especially at low lateral distances. This effect becomes more pronounced at higher impact velocities. Additionally, at higher impact velocities and minimum lateral distance (direct contact between the spheres), a smaller cavity detaches from the hydrophobic sphere's cavity, attaches to the hydrophilic sphere, and moves with it. These different regimes result in varying descent velocities for the spheres.

Funder

EU-H2020 Marie Skłodowska-Curie Actions

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3