Increase in the effective viscosity of polyethylene under extreme nanoconfinement

Author:

Ren Tian12,Hinton Zachary R.234,Huang Renjing1,Epps Thomas H.234ORCID,Korley LaShanda234ORCID,Gorte Raymond J.12,Lee Daeyeon12ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, University of Pennsylvania 1 , Philadelphia, Pennsylvania 19104, USA

2. Center for Plastics Innovation, University of Delaware 2 , Newark, Delaware 19716, USA

3. Department of Materials Science and Engineering 3 , University of Delaware, Newark, Delaware 19716, USA

4. Department of Chemical and Biomolecular Engineering, University of Delaware 4 , Newark, Delaware 19716, USA

Abstract

Understanding polymer transport in nanopores is crucial for optimizing heterogeneously catalyzed processes in polymer upcycling and fabricating high-performance nanocomposite films and membranes. Although confined polymer dynamics have been extensively studied, the behavior of polyethylene (PE)—the most widely used commodity polymer—in pores smaller than 20 nm remains largely unexplored. We investigate the effects of extreme nanoconfinement on PE transport using capillary rise infiltration in silica nanoparticle packings with average pore radii ranging from ∼1 to ∼9 nm. Using in situ ellipsometry and the Lucas–Washburn model, we discover a previously unknown inverse relationship between effective viscosity (ηeff) and average pore radius (Rpore). Additonally, we determine that PE transport under these extreme conditions is primarily governed by physical confinement, rather than pore surface chemistry. We refine an existing theory to provide a generalized formalism to describe the polymer transport dynamics over a wide range of pore radii (from 1 nm and larger). Our results offer valuable insights for optimizing catalyst supports in polymer upcycling and improving infiltration processes for nanocomposite fabrication.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3