A cryogenic forced oscillation apparatus to measure anelasticity of ice

Author:

Yamauchi Hatsuki1ORCID,McCarthy Christine1ORCID,Leeman John R.2ORCID,Holtzman Benjamin K.1ORCID

Affiliation:

1. Lamont-Doherty Earth Observatory, Columbia University 1 , Palisades, New York 10964, USA

2. Leeman Geophysical LLC 2 , Gentry, Arkansas 72734, USA

Abstract

We have developed a new cryogenic uni-axial forced oscillation apparatus to measure the anelastic behavior of ice by adapting the design of a previous high-precision apparatus for use in low-temperature (<0 °C) conditions. With this new apparatus, Young’s modulus and attenuation can be measured over a broad frequency range from 10−4 to 10 Hz. We have performed calibration tests with standard materials (steel spring, stainless steel, and acrylic samples) under various conditions to assess the apparatus properties and correct the effects on the obtained raw data. Young’s modulus and attenuation for an acrylic sample after all of the data corrections show good agreement with previously published values, demonstrating the validity of the data corrections and reliability of the obtained data. We further obtained a preliminary dataset of Young’s modulus and attenuation for an ice polycrystalline sample under small median stress and small stress amplitude. The anelastic response was not strain amplitude-dependent, that is, the response is linear. Moreover, the attenuation data are consistent with the data measured for other polycrystalline materials under similarly small stress conditions in terms of the Maxwell frequency scaling, which is known as a scaling law applicable to linear anelasticity induced by the diffusionally accommodated grain boundary sliding mechanism. Although there is still room for improving the control of testing conditions, we show that the new forced oscillation apparatus is capable of systematic studies on the anelastic properties of ice, the subject of future studies.

Funder

Division of Earth Sciences

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3