Affiliation:
1. Equipo de Propulsión Espacial y Plasmas, Universidad Carlos III de Madrid , Leganés, Spain
Abstract
A circular waveguide electron cyclotron resonance plasma thruster prototype driven by microwaves at 5.8 GHz (80–300 W) is characterized. The magnetic field is generated by a combination of Sm-CoYXG32 magnets and an electromagnet, which enables the tuning of the resonance position and magnetic nozzle shape. The main plasma plume properties are analyzed by using electrostatic probes when the mass flow rate (Xenon), microwave power, electromagnet current, and propellant injector design are varied. An estimation of the propulsive performance of the device is also presented. Results show that a single radial injector hole is not sufficient for a symmetric ion current profile and that magnetic nozzle shape and strength tuning can significantly affect the divergence angle and thruster floating potential. A utilization efficiency of up to 70% and electron temperatures of up to 16 eV have been measured.
Funder
Comunidad de Madrid
Agencia Estatal de Investigación
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献