Formation dynamics of branching structure in the slippery DLCA model

Author:

Hirata Koichi1ORCID,Araki Takeaki1ORCID

Affiliation:

1. Division of Physics and Astronomy, Graduate School of Science, Kyoto University , Kitashirakawa, Sakyo, Kyoto 606-8502, Japan

Abstract

We numerically investigated the aggregation dynamics and resulting network structures of colloidal gels using the slippery diffusion-limited cluster aggregation (DLCA) model. In this model, bonds are irreversibly formed upon the particle contacts, but the angles among them are not fixed, unlike the conventional DLCA. This allows clusters to be deformed in the process of aggregation. By characterizing the aggregation dynamics and using a reduced network scheme, our simulation revealed two distinct branching structure formation routes depending on the particle volume fraction ϕ. In lower volume fraction systems (ϕ ≤ 8%), the deformations of small-size clusters proceed prior to the percolation. When the Maxwell criterion is satisfied and the clusters become mechanically stable, the formation of the branching structure is nearly completed. After forming the branching structures, they aggregate and form a larger percolating network. Then, the aggregation proceeds through the elongation and straightening of the chain parts of the network. In higher volume fraction systems (ϕ > 8%), on the other hand, the clusters percolate, and a fine and homogeneous branching structure is formed at the early stage of the aggregation. In the aging stage, it collapses into a denser and more heterogeneous structure and becomes more stable. Our quantitative analyses of the branching structure will shed light on a new strategy for describing the network formation and elasticity of colloidal gels.

Funder

Core Research for Evolutional Science and Technology

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3