A white cell based broadband transient UV-vis absorption spectroscopy with pulsed laser photolysis reactors for chemical kinetics under variable temperatures and pressures

Author:

Winiberg Frank A. F.1ORCID,Chao Wen2ORCID,Caravan Rebecca L.1ORCID,Markus Charles R.12ORCID,Sander Stanley P.1,Percival Carl J.1ORCID

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology 1 , 4800 Oak Grove Drive, Pasadena, California 91109-8099, USA

2. Division of Chemistry and Chemical Engineering, California Institute of Technology 2 , 1200 E California Blvd., Pasadena, California 91125, USA

Abstract

UV-vis spectroscopy is widely used for kinetic studies in physical chemistry, as species’ absolute cross-sections are usually less sensitive to experimental conditions (i.e., temperature and pressure). Here, we present the design and characterization of a multipass UV-vis absorption spectroscopy white cell coupled to a pulsed-laser photolysis flow reactor. The glass reactor was designed to facilitate studies of gas phase chemical reactions over a range of conditions (239–293 K and 10–550 Torr). Purged windows mitigate contamination from chemical precursors and photolysis products. We report the measured impact of this purging on temperature uniformity and the absorption length and present some supporting flow calculations. The combined optical setup is unique and enables the photolysis laser to be coaligned with a well-defined absorption pathlength probe beam. This alignment leverages the use of one long-pass filter to increase the spectrum flatness and increase the light intensity vs other systems that use two dichroic mirrors. The probe beam is analyzed with a dual exit spectrograph, customized to split the light between an intensified CCD and photomultiplier tube, enabling simultaneous spectrum and single wavelength detection. This multipass system yields a pathlength of ∼450 cm and minimum observable concentrations of ∼3.7 × 1011 molecule cm−3 (assuming cross-sections ∼1.2 × 10−17 cm2). The temperature profile across the reaction region is ±2 K, defined by the worst-case temperature of 239 K, validated by measurements of the N2O4 equilibrium constant. Finally, the system is implemented to study the simplest Criegee intermediate, demonstrating the instrument performance and advantages of simultaneous spectrum and temporal profile measurements.

Funder

National Aeronautics and Space Administration

NASA Postdoctoral Program

J. Yang and Family Foundation

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemical Kinetic Study of the Reaction of CH2OO with CH3O2;The Journal of Physical Chemistry Letters;2024-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3