Design and implementation of a new apparatus for astrochemistry: Kinetic measurements of the CH + OCS reaction and frequency comb spectroscopy in a cold uniform supersonic flow

Author:

Lucas Daniel I.1ORCID,Guillaume Théo1ORCID,Heard Dwayne E.2ORCID,Lehman Julia H.1ORCID

Affiliation:

1. School of Chemistry, University of Birmingham 1 , Edgbaston B15 2TT, United Kingdom

2. School of Chemistry, University of Leeds 2 , Leeds LS2 9JT, United Kingdom

Abstract

We present the development of a new astrochemical research tool, HILTRAC, the Highly Instrumented Low Temperature ReAction Chamber. The instrument is based on a pulsed form of the CRESU (Cinétique de Réaction en Écoulement Supersonique Uniforme, meaning reaction kinetics in a uniform supersonic flow) apparatus, with the aim of collecting kinetics and spectroscopic information on gas phase chemical reactions important in interstellar space or planetary atmospheres. We discuss the apparatus design and its flexibility, the implementation of pulsed laser photolysis followed by laser induced fluorescence, and the first implementation of direct infrared frequency comb spectroscopy (DFCS) coupled to the uniform supersonic flow. Achievable flow temperatures range from 32(3) to 111(9) K, characterizing a total of five Laval nozzles for use with N2 and Ar buffer gases by impact pressure measurements. These results were further validated using LIF and direct frequency comb spectroscopy measurements of the CH radical and OCS, respectively. Spectroscopic constants and linelists for OCS are reported for the 1001 band near 2890–2940 cm−1 for both OC32S and OC34S, measured using DFCS. Additional peaks in the spectrum are tentatively assigned to the OCS-Ar complex. The first reaction rate coefficients for the CH + OCS reaction measured between 32(3) and 58(5) K are reported. The reaction rate coefficient at 32(3) K was measured to be 3.9(4) × 10−10 cm3 molecule−1 s−1 and the reaction was found to exhibit no observable temperature dependence over this low temperature range.

Funder

Horizon 2020 Framework Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3