Oscillatory behaviors of multiple shock waves to upstream disturbances

Author:

James Jintu K1ORCID

Affiliation:

1. Department of Mechanical Engineering, Andong National University , Andong 36729, Republic of Korea

Abstract

The oscillatory response of multiple shock waves to upstream disturbances in a supersonic flow is studied numerically in a constant area rectangular duct. The flow is accelerated through a nozzle with an exit Mach number of 1.75 and continues in the constant area duct, where multiple shock waves are formed. To investigate the effect of upstream disturbance on shock oscillations, three parameters are varied systematically: upstream turbulent intensity, frequency of upstream pressure fluctuation, and amplitude of upstream pressure fluctuation. The wall shear stress variation along the duct length provides the location of separation and reattachment points in the flow field. The wall pressure frequency spectra were used to investigate the low-frequency unsteadiness in shock oscillations. The power spectral density of the wall static pressure and the probability density function (PDF) of shock location are analyzed, and the results suggest that as the upstream turbulent intensity is increased, the dominant frequency of oscillation is increased and the shock oscillations become more symmetrical. As the upstream disturbance frequency is increased, the shock oscillations become more symmetrical and follow the Gaussian curve closely. The shock wave oscillates with the same upstream excitation frequency when the upstream disturbance amplitude is increased. At large values of upstream disturbance amplitude, the PDF shows a large deviation from the Gaussian, and the rms amplitude of shock oscillation increases monotonously. At higher amplitudes of upstream disturbance excitation, the traces of shock train leading-edge location display path-dependence characteristics.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3