Experimental investigation of flow control of a curved-surface jet at Mach 5 hypersonic flow

Author:

Sun Zhikun1ORCID,Shi Zhiwei1ORCID,Li Zheng2,Geng Xi1ORCID,Sun Qijie1,Chen Sinuo1ORCID,Sun Quanbing1

Affiliation:

1. Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China

Abstract

Jet flow-control technology is a promising area of fluid research. In this work, the flow-control effect of a curved-surface jet in an incoming flow of Mach = 5 and its underlying control mechanism are experimentally studied using high-speed photography and dynamic force measurement. From the establishment of complete stability of the flow field, the evolutionary process can be roughly divided into five stages: two equilibrium stages (short and long term), jet acceleration stage, bow shock formation stage, interference removal stage, and stable state. By defining the pressure ratio (PR) as an independent variable, it is found that the flow control of the jet occurs through different wave-system structures. The interaction between the jet and the incoming flow produces an oblique shockwave and expansion waves. The shockwave generates thrust and forms a virtual rudder surface; the expansion waves interact with the backflow region and the separated shear layer to generate lift. Moreover, PR has an optimal solution of PR opt. When PR < PR opt, the effect of flow control is related to α, Ve, and ρe, and the greater the PR, the stronger the flow-control effect. When PR > PR opt, the flow-control effect is related to α and ρe, and the larger the PR, the weaker the effect of the shockwave and the stronger the effect of the expansion waves but the slower the growth. In experiments, the thrust, pitching moment, and lift increased by 17.43%, 17.75%, and 9.45%, respectively, because of the appearance of wave-system structure when PR opt = 201.32.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3