Thermal transport across flat and curved gold–water interfaces: Assessing the effects of the interfacial modeling parameters

Author:

Paniagua-Guerra Luis E.1ORCID,Ramos-Alvarado Bladimir1ORCID

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University , University Park, Pennsylvania 16802, USA

Abstract

The present investigation assesses a variety of parameters available in the literature to model gold–water interfaces using molecular dynamics simulations. The study elucidates the challenges of characterizing the solid–liquid affinity of highly hydrophilic gold–water interfaces via wettability. As an alternative, the local pairwise interaction energy was used to describe the solid–liquid affinity of flat and curved surfaces, where for the latter, the calculation of a contact angle becomes virtually impossible. Regarding the heat transfer properties of different interface models (flat and curved), partly conclusive trends were observed between the total pairwise interaction energy and the thermal boundary conductance. It was observed that the solid surface structure, interfacial force field type, and force field parameters created a characteristic bias in the interfacial water molecules (liquid structuring). Consequently, a study of the liquid depletion layer provided better insight into the interfacial heat transfer among different interfaces. By computing the density depletion length, which describes the deficit or surplus of energy carries (water molecules) near the interface, a proper characterization of the thermal boundary conductance was obtained for the different gold–water interfaces. It was observed that the interfacial heat transfer is favored when the water molecules organize in cluster-like structures near the interface, by a surplus of water molecules at the interface, i.e., lower density depletion length, and by the closeness of water to the solid atoms.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3