Perpendicular magnetic anisotropy in as-deposited CoFeB/MgO thin films

Author:

Lou Kaihua12ORCID,Xie Tunan12,Zhao Qianwen12,Jiang Baiqing12,Xia ChaoChao13,Zhang Hanying12,Yao Zhihong1,Bi Chong123ORCID

Affiliation:

1. Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Microelectronics, University of Science and Technology of China, Hefei 230026, China

Abstract

Fabrication of perpendicularly magnetized ferromagnetic films on various buffer layers, especially on numerous newly discovered spin–orbit torque (SOT) materials to construct energy-efficient spin-orbitronic devices, is a long-standing challenge. Even for the widely used CoFeB/MgO structures, perpendicular magnetic anisotropy (PMA) can only be established on limited buffer layers through post-annealing above 300 °C. Here, we report that the PMA of CoFeB/MgO films can be established reliably on various buffer layers in the absence of post-annealing. Further results show that precise control of MgO thickness, which determines oxygen diffusion in the underneath CoFeB layer, is the key to obtain the as-deposited PMA. Interestingly, contrary to the previous understanding, post-annealing does not significantly influence the well-established as-deposited PMA but indeed enhances unsaturated PMA with a thick MgO layer by modulating oxygen distributions, rather than crystallinity or Co– and Fe–O bonding. Moreover, our results indicate that oxygen diffusion also plays a critical role in PMA degradation at high temperatures. These results provide a practical approach to build spin-orbitronic devices based on various high-efficient SOT materials.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3