EPR investigation of point defects in HfB2 and their roles in supercapacitor device performances

Author:

Buldu-Akturk Merve1ORCID,Balcı-Çağıran Özge23ORCID,Erdem Emre1ORCID

Affiliation:

1. Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı, Tuzla 34956, İstanbul, Turkey

2. Koç University Boron and Advanced Materials Application and Research Center, Rumelifeneri Yolu, Sarıyer 34450, İstanbul, Turkey

3. Department of Chemistry, Koç University, Sarıyer 34450, İstanbul, Turkey

Abstract

Boron-based materials have various attractive properties and gained increased attention in recent years as promising materials for energy storage applications. Despite vast literature on structural and mechanical properties of transition metal diborides, hafnium diboride (HfB2) in particular, research that addresses the use of HfB2 as an electrode for supercapacitor devices is lacking. Herein, we report both the synthesis and characterization of HfB2 and its electrochemical performance as the electrode for all-in-one symmetric and asymmetric supercapacitor devices. HfB2 powders were synthesized by mechanical activation assisted carbothermal reduction of hafnium oxide and boron oxide precursors. To improve the electrochemical energy storage performance of the electrodes, point defects (either Hf or B vacancies/interstitials) were formed in HfB2 through annealing at different temperatures (1450 and 1650 °C) under a flowing Ar atmosphere. The origin of point defects and their localization on the surface in HfB2 were identified using electron paramagnetic resonance (EPR) spectroscopy and discussed both from chemical and materials point-of-view. The defective HfB2 electrode exhibited higher performance than that of the non-defective one with specific energy and power densities of 0.144 W h kg−1 and 33.3 W kg−1; specific charge–discharge capacities of 0.32 and 0.31 mA h g−1; and 115.5%, 106.2%, and 84.1% retention of the initial capacitances, respectively. The relation between the defect content and the improved supercapacitor performances was explained by employing several structural (x-ray diffractometer and x-ray fluorescence), electronic (EPR), and electrochemical (potentiostatic electrochemical impedance spectroscopy, cyclic voltammetry, galvanostatic cycling with potential limitation) characterization tools.

Funder

TUBITAK

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3