Dynamics of Earth's bow shock under near-radial interplanetary magnetic field conditions

Author:

Pollock C. J.1ORCID,Chen L.-J.2ORCID,Schwartz S. J.3ORCID,Wang S.24ORCID,Avanov L.24ORCID,Burch J. L.5ORCID,Gershman D. J.2ORCID,Giles B. L.2ORCID,Raptis S.6ORCID,Russell C. T.7ORCID

Affiliation:

1. Denali Scientific, Fairbanks, Alaska 99709, USA

2. NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

3. University of Colorado LASP, Boulder, Colorado 80303, USA

4. University of Maryland, College Park, Maryland 20742, USA

5. Southwest Research Institute, San Antonio, Texas 78228, USA

6. Division of Space and Plasma Physics, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden

7. University of California at Los Angeles EPSS, Los Angeles, California 90095, USA

Abstract

We investigate the dynamics of Earth's quasi-parallel terrestrial bow shock based on measurements from the Magnetospheric MultiScale (MMS) spacecraft constellation during a period of near-radial interplanetary magnetic conditions, when the interplanetary magnetic field and the solar wind (SW) velocity are nearly anti-parallel. High-speed earthward ion flows with properties that are similar to those of the pristine SW are observed to be embedded within the magnetosheath-like plasma. These flows are accompanied by Interplanetary Magnetic Field (IMF) intensity of less than about 10 nT, compared to nearby magnetosheath intensities of generally greater than 10 nT. The high-speed flow intervals are bounded at their leading and trailing edges by intense fluxes of more energetic ions and large amplitude quasi-sinusoidal magnetic oscillations, similar to ultra-low frequency waves known to steepen and pileup on approach toward Earth to form the quasi-parallel bow shock. The MMS string-of-pearls configuration is aligned with the outbound trajectory and provides inter-spacecraft separations of several hundred km along its near 103length, allowing sequential observation of the plasma and magnetic field signatures during the event by the four spacecraft. The SW-like interval is most distinct at the outer-most MMS-2 and sequentially less distinct at each of the trailing MMS spacecraft. We discuss the interpretation of this event alternatively as MMS having observed a quasi-rigid bow shock contraction/expansion cycle, ripples or undulations propagating on the bow shock surface, or a more spatially local evolution in the context of either a deeply deformed shock surface or a porous shock surface, as in the three-dimensional patchwork concept of the quasi-parallel bow shock, under the extant near-radial IMF condition.

Funder

Science Mission Directorate

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3