Revisiting thermal transport in single-layer graphene: On the applicability of thermal snapshot interatomic force constant extraction methodology for layered materials

Author:

Alam Shadab1ORCID,Gokhale Amey G.1ORCID,Jain Ankit1ORCID

Affiliation:

1. Mechanical Engineering Department, IIT Bombay , Mumbai, Maharashtra 400076, India

Abstract

The thermal conductivities of single-/bi-layer graphene and bulk-graphite are obtained using the Boltzmann transport equation (BTE) framework by accounting for three-phonon and four-phonon scatterings. For single-layer graphene, the thermal conductivity and interatomic force constants obtained using temperature-independent finite-difference, and temperature-dependent molecular dynamics-based approaches agree with each other. The use of the thermal snapshot approach to get temperature-dependent force constants results in a non-physical description of interatomic distances for single-layer graphene. The predicted thermal conductivity at room temperature using finite-difference based force constants is 800 W/m K, which is a severe under-prediction of experimentally measured values. For bi-layer graphene and bulk graphite, the thermal snapshot methodology is applicable and thermal conductivity changes by 25% and 5% with temperature-dependent force constants. The effect of four-phonon scattering is less than 10% on the predicted thermal conductivity of bi-layer graphene and graphite, and the obtained thermal conductivities using thermal snapshot methodology are in agreement with the literature. The limitation in the prediction of thermal conductivity of single-layer graphene via the BTE approach stems from non-accountability of temperature-dependence in finite-difference based force constants and non-physical description of interatomic bonds in thermal snapshot based force constants extraction for planar 2-atoms unitcell of single layer graphene.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3