Kinetic Monte Carlo modeling of oxide thin film growth

Author:

Purton John A.1ORCID,Elena Alin M.1ORCID,Teobaldi Gilberto23ORCID

Affiliation:

1. Scientific Computing Department, STFC-United KingdomRI, Daresbury Laboratory, Keckwick Lane, Warrington WA4 4AD, United Kingdom

2. Scientific Computing Department, STFC-United KingdomRI, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom

3. School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

Abstract

In spite of the increasing interest in and application of ultrathin film oxides in commercial devices, the understanding of the mechanisms that control the growth of these films at the atomic scale remains limited and scarce. This limited understanding prevents the rational design of novel solutions based on precise control of the structure and properties of ultrathin films. Such a limited understanding stems in no minor part from the fact that most of the available modeling methods are unable to access and robustly sample the nanosecond to second timescales required to simulate both atomic deposition and surface reorganization at ultrathin films. To contribute to this knowledge gap, here we have combined molecular dynamics and adaptive kinetic Monte Carlo simulations to study the deposition and growth of oxide materials over an extended timescale of up to ∼0.5 ms. In our pilot studies, we have examined the growth of binary oxide thin films on oxide substrates. We have investigated three scenarios: (i) the lattice parameter of both the substrate and thin film are identical, (ii) the lattice parameter of the thin film is smaller than the substrate, and (iii) the lattice parameter is greater than the substrate. Our calculations allow for the diffusion of ions between deposition events and the identification of growth mechanisms in oxide thin films. We make a detailed comparison with previous calculations. Our results are in good agreement with the available experimental results and demonstrate important limitations in former calculations, which fail to sample phase space correctly at the temperatures of interest (typically 300–1000 K) with self-evident limitations for the representative modeling of thin films growth. We believe that the present pilot study and proposed combined methodology open up for extended computational support in the understanding and design of ultrathin film growth conditions tailored to specific applications.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3