Thermal gradient and elastic dependence of induced charge electro-osmosis in viscoelastic fluids

Author:

Chen Di-Lin12ORCID,Luo Xiao-Ping12ORCID,Su Zheng-Gang3ORCID,Luo Kang12ORCID,Yi Hong-Liang12ORCID

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China

2. Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, People's Republic of China

3. AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, People's Republic of China

Abstract

Induced charge electro-osmosis has notable implementation possibilities in thermal management and efficient electrokinetic micropumps. We present the coupled numerical implementation around a polarized cylinder subject to an external electric field with the influence of different polymer elasticity and thermal gradients. The azimuthal velocity, flow types, kinetic energy, elastic energy, ion transport behavior, and heat transfer capability are investigated in detail. The results show that the inflow and outflow rates approximately overlap for a typical small voltage limit [Formula: see text] < 0.1. The Rayleigh number ( Ra) significantly influences the elastic energy accumulation and evolution time to the final steady state. The thermal buoyancy forces are not sufficient to create typical thermogravitational convection with passive heat transfer when Ra < 1.3 × 10−3, resulting in heat diffusion and electro-osmosis velocity dominating the temperature distribution. The Nusselt number ( Nu) plot with a weak viscoelastic effect implies an asymptotic [Formula: see text] relation. Relevant results open possibilities for enhanced mixing and heat transfer in microdevices, providing insight into barriers to the non-Newtonian nature of electrokinetic dynamics.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3