1 MeV electron irradiation effect and damage mechanism analysis of flexible GaInP/GaAs/InGaAs solar cells

Author:

Wang T. B.12ORCID,Wang Z. X.12,Zhang S. Y.12,Li M.12,Tang G. H.12,Zhuang Y.12,Yang X.12,Aierken A.12ORCID

Affiliation:

1. School of Energy and Environment Science, Yunnan Normal University 1 , 650500 Kunming, People’s Republic of China

2. Key Laboratory of New Photovoltaic Materials and Thin Film Solar Cells, Yunnan Provincial Department of Education 2 , 650500 Kunming, People’s Republic of China

Abstract

In this study, the degradation behavior of flexible GaInP/GaAs/InGaAs (IMM3J) solar cells and their metamorphic subcells under 1 MeV electron irradiation was investigated. The remaining factors such as short-circuit current density (Jsc), open-circuit voltage (Voc), and maximum power (Pmax) were 95.62, 85.52, and 79.73%, respectively, at an irradiation fluence of 2 × 1015 e/cm2. The spectral responses of the InGaAs and GaAs subcells degraded significantly, and the InGaAs subcell experienced greater degradation than the GaAs subcell after irradiation. In addition, the current-limiting unit was switched from GaInP to InGaAs after irradiation. Defect analysis by deep-level transient spectroscopy (DLTS) revealed that with increasing irradiation fluence, the defects that had the greatest impact on the performance of GaAs subcells were EV + 0.36 and EV + 0.42 eV. For InGaAs subcells, the defects that had the greatest impact on the performance were EV + 0.29 and EV + 0.24 eV. The decrease in the minority carrier lifetime is the main reason for the decrease in the electrical performance of solar cells, and the variation in the effective minority carrier lifetime (τeff) in the subcells with the irradiation fluence was calculated based on the DLTS results. At a fluence of 2 × 1015 e/cm2, the τeff of the GaAs and InGaAs subcells decreased from 2.93 × 10−10 and 9.10 × 10−10 s to 1.56 × 10−11 and 1.60 × 10−12 s, respectively. These results provide a reference for predicting the degradation of short-circuit current and open-circuit voltage of flexible IMM3J.

Funder

Applied Basic Research Foundation of Yunnan Province

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3