Tunable magnetic synapse for reliable neuromorphic computing

Author:

Mou Hongming1ORCID,Luo Zhaochu2ORCID,Zhang Xiaozhong1ORCID

Affiliation:

1. Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University 1 , Beijing, China

2. State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University 2 , Beijing, China

Abstract

Artificial neural networks (ANNs), inspired by the structure and function of the human brain, have achieved remarkable success in various fields. However, ANNs implemented using conventional complementary metal oxide semiconductor technology face significant limitations. This has prompted exploration of nonvolatile memory technologies as potential solutions to overcome these limitations by integrating storage and computation within a single device. These emerging technologies can retain resistance values without power, allowing them to serve as analog weights in ANNs, mimicking the behavior of biological synapses. While promising, these nonvolatile devices often exhibit inherent nonlinear relationships between resistance and applied voltage, complicating training processes and potentially impacting learning accuracy. This article proposes a magnetic synapse device based on the spin–orbit torque effect with geometrically controlled linear and nonlinear response characteristics. The device consists of a magnetic multilayer stack patterned into a designed shape, where the width variation along the current flow direction allows for controllable magnetic domain wall propagation. Through finite element method simulations and experimental studies, we demonstrate that by engineering the device geometry, a linear relationship between the applied current and the resulting Hall resistance can be achieved, mimicking the desired linear weight-input behavior in artificial neural networks. Additionally, this study explores the influence of current pulse width on the response curves, revealing a deviation from linearity at longer pulse durations. The geometric tunability of the magnetic synapse device offers a promising approach for realizing reliable and energy-efficient neuromorphic computing architectures.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Reference22 articles.

1. Evolving artificial neural networks;Proc. IEEE,1999

2. Computing with spiking neuron networks,2012

3. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups;IEEE Signal Process. Mag.,2012

4. Deep residual learning for image recognition,2016

5. D. Bahdanau , K.Cho, and Y.Bengio, “ Neural machine translation by jointly learning to align and translate,” arXiv:1409.0473 (2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3