Identification of no-fly zones for delivery drone path planning in various urban wind environments

Author:

Jiang ShanORCID,Wang JinghanORCID,Li ChaoORCID,Ou Jinping,Duan PenghaoORCID,Li LishuaiORCID

Abstract

A drone delivery system, characterized by its low energy consumption, high efficiency, and extensive coverage capability, has been adopted as an effective solution to overcome the limitations of traditional ground transportation. However, due to strong interactions between urban structures and wind, the wind environment in the low-altitude airspace of urban areas poses significant safety risks for drone operations, a challenge that remains unresolved. To mitigate these risks, this study presents a methodology for precisely defining the no-fly zones (NFZs) for drone operations using computational fluid dynamics (CFD) simulations. Three hazardous indices—safe, deviation, and unsafe—are proposed to indicate the drone operation status. High-resolution CFD models of urban wind environments in a real city area are coupled with meteorological wind data to provide statistical results for the three indices. The Reynolds-averaged Navier–Stokes turbulence model is employed to simulate two wind environments, standard wind and strong wind, under 36 incoming flow directions. Considering eight flight orientations of drone operating in horizontal planes at various heights, a set of maps for the occurrence probability of the three hazardous indices is provided. These maps can be utilized to determine safe areas, identify no-fly zones corresponding to high occurrence probabilities of deviation and unsafe indices, and establish efficient flight paths for drone operations.

Funder

City University of Hong Kong Start-up Grant

Strategic Interdisciplinary Research Grant

Early Career Scheme

General Research Fund

Shenzhen Basic Research Program

Guangdong Basic and Applied Basic Research Fundation

Shenzhen Science and Technology Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3