Water orientation on platinum surfaces controlled by step sites

Author:

Nagatsuka Naoki1ORCID,Otsuki Takumi1,Kamibashira Shota1,Koitaya Takanori1ORCID,Watanabe Kazuya1ORCID

Affiliation:

1. Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

Abstract

In this work, the adsorption structure of deuterated water on the stepped platinum surface is studied under an ultra-high vacuum by using heterodyne-detected sum-frequency generation spectroscopy. On a pristine Pt(553), D2O molecules adsorbed at the step sites act as hydrogen bond (H-bond) donors to the adjacent terrace sites. This ensures the net D-down orientation at the terrace sites away from the steps. In particular, the pre-adsorption of oxygen atoms at the step sites significantly alters the D-down configuration. The oxygen pre-adsorption leads to a spontaneous dissociation of the post-adsorbed water molecules at the step to form hydroxyl (OD) species. Since the hydroxyl at the step acts as a strong H-bond acceptor, D2O at the terrace no longer maintains the D-down configuration and adopts flat-lying configurations, significantly reducing the number of D-down molecules at the terrace. Density-functional theoretical calculations support these pictures. This work demonstrates the critical role of steps in controlling the net orientation of the interfacial water and provides an important reference for future considerations of the reactions at electrochemical interfaces.

Funder

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3