An efficient protocol for excited states of large biochromophores

Author:

Feighan Oliver1ORCID,Manby Frederick R.1ORCID,Bourne-Worster Susannah1ORCID

Affiliation:

1. Centre for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom

Abstract

Efficient energy transport in photosynthetic antenna is a long-standing source of inspiration for artificial light harvesting materials. However, characterizing the excited states of the constituent chromophores poses a considerable challenge to mainstream quantum chemical and semiempirical excited state methods due to their size and complexity and the accuracy required to describe small but functionally important changes in their properties. In this paper, we explore an alternative approach to calculating the excited states of large biochromophores, exemplified by a specific method for calculating the Qy transition of bacteriochlorophyll a, which we name Chl-xTB. Using a diagonally dominant approximation to the Casida equation and a bespoke parameterization scheme, Chl-xTB can match time-dependent density functional theory’s accuracy and semiempirical speed for calculating the potential energy surfaces and absorption spectra of chlorophylls. We demonstrate that Chl-xTB (and other prospective realizations of our protocol) can be integrated into multiscale models, including concurrent excitonic and point-charge embedding frameworks, enabling the analysis of biochromophore networks in a native environment. We exploit this capability to probe the low-frequency spectral densities of excitonic energies and interchromophore interactions in the light harvesting antenna protein LH2 (light harvesting complex 2). The impact of low-frequency protein motion on interchromophore coupling and exciton transport has routinely been ignored due to the prohibitive costs of including it in simulations. Our results provide a more rigorous basis for continued use of this approximation by demonstrating that exciton transition energies are unaffected by low-frequency vibrational coupling to exciton interaction energies.

Funder

U.S. Department of Energy

Royal Commission for the Exhibition of 1851

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3