Thermal contribution to current-driven antiferromagnetic-order switching

Author:

Yoo Myoung-Woo12ORCID,Lorenz Virginia O.13ORCID,Hoffmann Axel123ORCID,Cahill David G.123ORCID

Affiliation:

1. Materials Research Laboratory, University of Illinois at Urbana-Champaign 1 , Urbana, Illinois 61801, USA

2. Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign 2 , Urbana, Illinois 61801, USA

3. Department of Physics, University of Illinois at Urbana-Champaign 3 , Urbana, Illinois 61801, USA

Abstract

In information technology devices, current-driven state switching is crucial in various disciplines including spintronics, where the contribution of heating to the switching mechanism plays an inevitable role. Recently, current-driven antiferromagnetic order switching has attracted considerable attention due to its implications for next-generation spintronic devices. Although the switching mechanisms can be explained by spin dynamics induced by spin torques, some reports have claimed that demagnetization above the Néel temperature due to Joule heating is critical for switching. Here, we present a systematic method and an analytical model to quantify the thermal contribution due to Joule heating in micro-electronic devices, focusing on current-driven octupole switching in the non-collinear antiferromagnet, Mn3Sn. The results consistently show that the critical temperature for switching remains relatively constant above the Néel temperature, while the threshold current density depends on the choice of substrate and the base temperature. In addition, we provide an analytical model to calculate the Joule-heating temperature, which quantitatively explains our experimental results. From numerical calculations, we illustrate the reconfiguration of magnetic order during cooling from a demagnetized state of polycrystalline Mn3Sn. This work provides not only deeper insights into magnetization switching in antiferromagnets, but also a general guideline for evaluating the Joule-heating temperature excursions in micro-electronic devices.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3