Space-charge-induced colossal dielectric constant and large flexoelectricity in Nb-doped BaTiO3 ceramics

Author:

Li Hao1ORCID,Wu Hao1ORCID,Wang Zhiguo1ORCID,Xie Zhengqiu2ORCID,Shu Shengwen3ORCID,Liu Zhiyong4ORCID,Ke Shanming4ORCID,Shu Longlong1ORCID

Affiliation:

1. School of Physics and Materials, Nanchang University 1 , Nanchang 330031, People's Republic of China

2. College of Mechanical Engineering, Chongqing University of Technology 2 , 400050 Chongqing, People's Republic of China

3. College of Electrical Engineering and Automation, Fuzhou University 3 , Fuzhou 350108, People's Republic of China

4. School of Physics and Materials Science, Guangzhou University 4 , Guangzhou 510006, People's Republic of China

Abstract

Donor doping can increase the dielectric constant of a material by several orders of magnitude due to induced space charge causing interfacial polarization. Giant dielectric properties and interface polarization are also both expected to greatly enhance the flexoelectric behavior of a material. In this work, a typical flexoelectric ceramic material, BaTiO3, was selected and donor doped using elemental Nb. Compared with the nominal BaTiO3 ceramic, the dielectric constant and flexoelectric coefficient of the Nb-doped BaTiO3 ceramics were significantly improved. The transverse flexoelectric coefficient of 0.3 mol. % Nb-BaTiO3 was found to increase to nearly 40 times the nominal value, reaching 387 μC/m. The results indicate that the giant dielectric response, and therefore the giant flexoelectric response, is the result of the combined effects of internal barrier-layer capacitance and surface barrier-layer capacitance. This study not only deepens the understanding of the semiconductor macro-dielectric effect and the flexoelectric mechanism caused by doping, but it also provides a feasible strategy for the design of giant dielectric/flexoelectric response materials and related devices with high dielectric constants and flexoelectric coefficients.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3