Surface-wave-sustained plasma synthesis of graphene@Fe–Si nanoparticles for lithium-ion battery anodes

Author:

Jie Ziyao1ORCID,Zhang Zhibo12,Bai Xinpeng1ORCID,Ma Wenhui1,Zhao Xuewei1,Chen Qijun13,Zhang Guixin1ORCID

Affiliation:

1. State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University 1 , Beijing 100084, China

2. State Key Laboratory of Advanced Power Transmission Technology (State Grid Smart Grid Research Institute Co., Ltd.) 2 , Beijing 102200, China

3. Guoneng Electric Power Engineering Management Co., Ltd 3 ., Beijing 100101, China

Abstract

Silicon encapsulated in conductive layers has proven to be an excellent method for retaining the high capacity of silicon in lithium-ion batteries (LIBs) throughout cycling. This study presents an ultra-fast, single-step, and scalable method for synthesizing graphene@Fe–Si nanoparticles via an atmospheric pressure surface-wave-sustained plasma. The verification of the synthesized nanoparticles, encompassing graphene cladding and silicon nanoparticles encapsulated in iron, was conducted through energy-dispersive x-ray spectroscopy mapping, line scanning in the transmission electron microscopy mode, and high-resolution transmission electron microscopy. Additionally, Raman spectroscopy corroborated the identity of the cladding as graphene. This study provides a viable strategy for the industrial production of anode materials for high-performance LIBs.

Funder

National Natural Science Foundation of China

Beijing Science and Technology Planning Project

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3