Comparing the kinetics of ionized and neutral atoms from single and multi-element laser-produced plasmas

Author:

Kautz Elizabeth J.12ORCID,Phillips Mark C.3ORCID,Diwakar Prasoon K.4ORCID,Zelenyuk Alla2ORCID,Harilal Sivanandan S.25ORCID

Affiliation:

1. Nuclear Engineering Department, North Carolina State University 1 , Raleigh, North Carolina 27695, USA

2. Pacific Northwest National Laboratory 2 , Richland, Washington 99352, USA

3. James C. Wyant College of Optical Sciences, University of Arizona 3 , Tucson, Arizona 85721, USA

4. South Dakota School of Mines and Technology 4 , Rapid City, South Dakota 57701, USA

5. Chemistry Department, Washington State University 5 , Pullman, Washington 99164, USA

Abstract

Kinetics of ion and neutral atom emission features were compared for nanosecond laser-produced plasmas generated from several metal targets (i.e., Al, Ti, Zr, Nb, Ta) and an alloy containing all of these as principal alloying elements. Plasmas were produced by focusing 6 ns, 1064 nm pulses from an Nd:YAG laser on the targets of interest in a vacuum. A Faraday cup was used for collecting ion temporal features while spatially and temporally resolved emission spectroscopy was used for measuring the optical time of flight of various neutral atomic transitions. Our results highlight that most probable ion and atom velocities decay with increasing atomic mass. Trends for ions from the alloy target represent a weighted average where all ions contribute. For both ions and atoms, velocities decrease with increasing heat of vaporization and melting temperature, consistent with the thermal mechanisms that contribute to nanosecond laser ablation. Kinetic energies for neutral atoms from pure metal targets have some variability with atomic mass, whereas kinetic energies for atoms from the alloy target are more similar. These more similar kinetic energies observed for neutral atoms in the multi-element plasma may be attributed to collisions between species from all elements in the Knudsen layer.

Funder

Defense Threat Reduction Agency

Workforce Development for Teachers and Scientists

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3