The thermodynamic limit of an ideal Bose gas by asymptotic expansions and spectral ζ-functions

Author:

Weiss Daniel Alexander1ORCID

Affiliation:

1. Arnold Sommerfeld Center for Theoretical Physics, Theresienstraße 37, 80333 München, Germany

Abstract

We analyze the thermodynamic limit—modeled as the open-trap limit of an isotropic harmonic potential—of an ideal, non-relativistic Bose gas with a special emphasis on the phenomenon of Bose–Einstein condensation. This is accomplished by the use of an asymptotic expansion of the grand potential, which is derived by ζ-regularization techniques. Herewith, we can show that the singularity structure of this expansion is directly interwoven with the phase structure of the system: In the non-condensation phase, the expansion has a form that resembles usual heat kernel expansions. By this, thermodynamic observables are directly calculable. In contrast, the expansion exhibits a singularity of infinite order above a critical density, and a renormalization of the chemical potential is needed to ensure well-defined thermodynamic observables. Furthermore, the renormalization procedure forces the system to exhibit condensation. In addition, we show that characteristic features of the thermodynamic limit, such as the critical density or the internal energy, are entirely encoded in the coefficients of the asymptotic expansion.

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3